07-Sentinel流控效果-排队等待

Sentinel流控效果-排队等待

名词解释

  • 资源名:唯一名称,默认请求路径
  • 针对来源:Sentinel可以针对调用者进行限流,填写微服务名,默认default(不区分来源)
  • 阈值类型/单机阈值:
    • QPS(每秒钟的请求数量):当调用该API的QPS达到阈值的时候,进行限流
    • 线程数:当调用该API的线程数量达到阈值的时候,进行限流
  • 是否集群:当前不需要集群
  • 流控模式:
    • 直接:API达到限流条件时,直接限流
    • 关联:当关联的资源达到阈值时,就限流自己
    • 链路:只记录指定链路上的流量(指定资源从入口资源进来的流量,如果达到阈值,就进行限流)(API级别的针对来源)
  • 流控效果:
    • 快速失败:直接失败,抛异常
    • Warm Up:根据coldFactor(冷加载因子,默认3)的值,从阈值/codeFacotor,经过预热时长,才达到设置的QPS阈值
    • 排队等待(匀速器):匀速排队,让请求以匀速的速度通过,阈值类型必须设置为QPS,否则无效

排队等待

​ 官方文档:https://sentinelguard.io/zh-cn/docs/flow-control.html

​ 概念:匀速排队方式会严格控制请求通过的间隔时间,也即是让请求以均匀的速度通过,对应的是漏桶算法。

​ 这种方式主要用于处理间隔性突发的流量,例如消息队列。想象一下这样的场景,在某一秒有大量的请求到来,而接下来的几秒则处于空闲状态,我们希望系统能够在接下来的空闲期间逐渐处理这些请求,而不是在第一秒直接拒绝多余的请求(削峰填谷)。

​ 例图:

匀速器

​ 它的中心思想是,以固定的间隔时间让请求通过。当请求到来的时候,如果当前请求距离上个通过的请求通过的时间间隔不小于预设值,则让当前请求通过。否则,计算当前请求的预期通过时间,如果该请求的预期通过时间小于规则预设的 timeout 时间,则该请求会等待直到预设时间到来通过(排队等待处理);若预期的通过时间超出最大排队时长,则直接拒接这个请求。

​ Sentinel 匀速排队等待策略是漏桶算法结合虚拟队列等待机制实现的。

​ 注意:匀速排队模式暂时不支持 QPS > 1000 的场景。

演示

流控规则:

为了看到效果,我们在代码中进行打印,更改8401微服务中的FlowLimitController

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
package com.example.cloudalibabasentinel8401.controller;

import com.alibaba.csp.sentinel.annotation.SentinelResource;
import com.example.cloudalibabasentinel8401.service.TestService;
import lombok.extern.slf4j.Slf4j;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;

import java.util.concurrent.TimeUnit;

@RestController
@Slf4j
public class FlowLimitController {
@Autowired
TestService testService;
@GetMapping("/testA")
public String testA(){
log.info(Thread.currentThread().getName()+":testA");
return testService.common();
}

@GetMapping("/testB")
public String testB(){
return testService.common();
}
}

最后我们可以通过Postman来进行测试,发送请求时没有延迟,同时发送10条请求,然后我们会发现就是排队效果1秒执行一个请求,同时我们在Idea中也可以看到打桩效果